

# **TECHNICAL REPORT 1**

S.T.E.P.S. Building Lehigh University Bethlehem, PA

Joseph S. Murray, Structural Option Faculty Advisor: Linda Hanagan September 17<sup>th</sup>, 2012 Existing Conditions

**Existing Conditions** 

Joseph S. Murray

## Table of Contents

| 1. | Executive Summary |                         |  | 2  |
|----|-------------------|-------------------------|--|----|
| 2. | Buildir           | ng Introduction         |  | 3  |
| 3. | Structu           | ural System             |  | 5  |
|    | 3.1               | Floor System            |  | 5  |
|    | 3.2               | Vertical Members        |  | 9  |
|    | 3.3               | Foundation              |  | 9  |
|    | 3.4               | Roof System             |  | 9  |
|    | 3.5               | Lateral System          |  | 10 |
| 4. | Design            | Codes                   |  | 10 |
| 5. | Design            | Loads                   |  | 11 |
|    | 5.1               | Live Loads              |  | 11 |
|    | 5.2               | Dead Loads              |  | 12 |
|    | 5.3               | Roof Live Load          |  | 12 |
|    | 5.4               | Roof Dead Load          |  | 12 |
|    | 5.5               | Roof Snow Load          |  | 13 |
|    | 5.5.1             | Uniform Roof Snow Load  |  | 13 |
|    | 5.5.2             | Drift Snow Load         |  | 13 |
|    | 5.6               | Penthouse Live Load     |  | 13 |
|    | 5.7               | Penthouse Dead Load     |  | 14 |
|    | 5.8               | Brick Façade Load       |  | 14 |
|    | 5.9               | Glass Curtain Wall Load |  | 14 |
|    | 5.10              | Penthouse Wall Load     |  | 14 |
|    | 6. Win            | d Pressures             |  | 15 |
|    | 7. Seis           | mic Loads               |  | 17 |
|    | 7.1 Sei           | smic Design Factors     |  | 17 |
|    | 7.2 Eff           | ective Seismic Weight   |  | 18 |
|    | 7.3 Sei           | smic Design Loads       |  | 19 |
|    | 8. Grav           | vity Spot Checks        |  | 19 |
|    | 9. Con            | clusion                 |  | 21 |
|    | A-1               | Wind Calculations       |  | 22 |
|    | A-2               | Spot Check Calculations |  | 25 |

#### **Existing Conditions**

Joseph S. Murray

#### 1. Executive Summary

This report aims to serve as a technical description and analysis of the structural system of the S.T.E.P.S. Building in Bethlehem, PA. The purpose of this report is to serve as a Capstone project for the Pennsylvania State University's Architectural Engineering (AE) program. It is known as Senior Thesis and is conducted by all 5<sup>th</sup> year students in the AE program.

First, the building will be introduced and described. This report will specifically describe the structural systems used in the building. It is constructed of a concrete slab with metal decking that transfers loads to wide-flange steel beams. These slabs are constructed compositely with the beams for added strength. The columns are also wideflange sections which have concrete foundation piers. The piers have shallow footings that transfer loads into the ground.

The calculations made in this report examine the loadings that may have been used to design the building. In addition, there is a wind loading analysis and a seismic loading analysis. Lastly, some basic gravity spot checks were performed. In further reports, these calculations will be elaborated upon and used to test members for lateral loads and combined effects. Wind will in all likelihood control lateral loads used in design, because Bethlehem, PA is not in a seismic region. However, seismic response of this building must still be studied further.

In general, the loadings assumed in this report appear to make sense. Some communication must be made with the Structural Engineer of record to find out specifically what assumptions he or she made in design. This will also be explored in Tech 2 and Tech 3.

#### **Existing Conditions**

Joseph S. Murray

#### 2. Building Introduction

Lehigh University envisioned the Science, Technology, Environment, Policy, and Society (S.T.E.P.S.) Building as a way to attract new students and retain existing students in the science and engineering fields. The university lacked a modern laboratory building with all the amenities that have come with increases in technology over the years. In an interesting and experimental fashion, the departments have been intermixed by Health, Education & Research Association, Inc. They believe it will lead to increased communication and collaboration among faculty and researchers of various disciplines.

The building is oriented on the corner of East Packer Ave. and Vine St. as shown in the photo below:



Figure 1:

Image Courtesy of Bing.com

Lehigh University slowly purchased the properties which were on the building site as they planned for a building to be put there. The building is also connected to an existing structure through the use of a raised pathway that is enclosed. The building is divided into three wings for the purpose of this analysis. These wings are diagramed in Figure 2 on the following page.

#### **Existing Conditions**

Joseph S. Murray

Figure 2:



Image courtesy of Bing.com

Wing A is a one story structure with a lounge and entryway. It has raised clearstories to allow for natural daylight to illuminate the space. It also has a 12" deep green roof supported by structural wood which helped in earning LEED Certification. The building is LEED Gold certified by the United States Green Building Council (USGBC). Because of its limited building height, Wing A will not be analyzed in this report.

Wing B is a four story steel framed structure oriented along Packer Ave. Interestingly, Packer Ave. and Vine St. do not meet at a 90 degree angle. So, Wing B is aligned with Packer Ave., and Wing C is aligned with Vine St. There is a large atrium with lounge areas connecting the two structures on each floor.

Wing C is also steel framed and is 5 stories. The building's lateral system consists of moment connections between columns and beams throughout the building. It should be noted that the load resisting elements are one structure as they continue uninterrupted through the atrium.

Sustainable features of the building include the green roof, high-efficiency glazing, sun shading, and custom mechanical systems.

#### **Existing Conditions**

Joseph S. Murray

#### 3. Structural System

#### 3.1 Floor System

There is a composite steel deck floor system in place for all floors in Wings B & C above grade. Basement floors are slab on grade. Below is a detail of a typical composite beam with shear studs indicated:

Figure 3:



Along Vine St., which will be considered the longitudinal direction of the building, typical girders have a span of 21'-4" with one intersecting beam at their midpoint. The transverse beams which run parallel to Packer Ave. have a span anywhere from 36'-11" to 42'8".

The decking is a 3" 18 gauge steel deck with 4-1/2" concrete topping and welded wire fabric. The bulk of the decking is run longitudinally throughout Wings B & C and has a clear span of 10'8". The exceptions to this are two bays to the very south of Wing B along Packer Ave. These bays are oriented transversely. The total thickness ends up being 7-1/2" with a 6x6" W2.9 x W2.9 welded wire fabric embedded ¾" from the top of the slab. On the following page is a typical detail of the composite floor slab:

#### **Existing Conditions**

Joseph S. Murray

#### Figure 4:



The floor system is supported by wide flange beams designed as simply supported. A combination of full moment connections, semi-rigid moment connections, and shear connections are used. Typical sizes for transverse beams are W24x55 and W24x76. The girders are W21x44. Most beams have between 28 and 36 studs to transfer shear. Figure 5 shows a typical Full Moment Connection with field welds noted. Figure 6 shows

the entirety of the first floor system for Wing B. Figure 8 shows the entirety of the first floor system for Wing C.

Figure 5:



## Existing Conditions

Joseph S. Murray





## **Existing Conditions**

Joseph S. Murray



#### **Existing Conditions**

Joseph S. Murray

#### 3.2 Vertical Members

Wide flange columns are used throughout the building for gravity loads. They are arranged for strong axis bending in the transverse direction. Most spans have a column at either end with another at the midpoint.

W14 is the most common section size with weights varying from W14x90 all the way up to W14x192 on the lower floors.

#### 3.3 Foundation

Schnabel Engineering performed a geotechnical analysis of the site in 2007. This concluded that the soil had sufficient bearing capacity to support the loads from the building.

Interior columns are supported by a mat foundation 18' wide and 3' deep. Exterior columns bear on square footings ranging from 11'x11' to 16'x16' with depths from 1'6" to 2'. These are tied into the foundation by base plates with concrete piers.

The reinforced foundation walls have strip footings ranging from 2' to 6' wide with depths between 1' and 2'. These are monolithically cast with the piers for the exterior columns.

#### 3.4 Roof System

The roof decking consists of a 3" 16 gauge steel roof deck with a sloped roof for drainage. Topping ranges from  $\frac{1}{2}$ " to 4-1/2" to achieve a  $\frac{1}{2}$ ":1' slope. Therefore, total thickness ranges from 3-1/4" to 7-1/2". Framing is similar to floor framing with wide flanges ranging from W24x55 to W24x68.

The floor system has increased loads where the mechanical penthouses are situated. The penthouse itself is framed with square HSS tubing. Heavier W27x84 wide flange beams support this area.

#### **Existing Conditions**

Joseph S. Murray

#### 3.5 Lateral System

The building resists lateral loads by moment connections at the beam to column locations. They are continuous throughout the building and beams are designed as simply supported for gravity loads. The moment connections are designed only to take lateral loads. Many of these moment connections are semi-rigid connections to give the system more flexibility. An example of the two types of moment connections is shown below in a section of the roof plan for Wing C. The triangles are full moment connections and the dots are semi-rigid.

#### Figure 7B:



The lateral loads seen in the Penthouse are going to be the greatest based on height. At the highest Penthouse roof level, there are moment connections in the transverse direction and single angle braced frames in the longitudinal direction. The connections to the roof of the building are rigidly connected to the roof framing members. These members then transfer the load to flexible moment connections in the columns supporting the roof. These roof members are a larger W27x102 compared to adjacent members such as W24x68 or W27x84.

#### **Existing Conditions**

Joseph S. Murray

#### 4. Design Codes

The Pennsylvania Uniform Construction Code (PUCC) is the code adopted by the city of Bethlehem, Pennsylvania. The PUCC is based on the International Code Council (ICC). When design was completed in 2008, the 2006 PUCC referenced the following codes:

2006 International Building Code

2006 International Electrical Code

2006 International Fire Code

2006 International Fuel Gas Code

2006 International Mechanical Code

ASCE 7-05, Minimum Design Loads for Buildings and Other Structures

AISC Steel Construction Manual, 13<sup>th</sup> Edition

ACI 318-05, Building Code Requirements for Structural Concrete

ACI 530-05, Building Code Requirements for Masonry Structures

The primary codes employed were the AISC Manual and ASCE 7-05

#### 5. Design Loads

5.1 Live Loads

#### Table 1: Live Load Values

| Occupancy                           | Design Load on Drawings | ASCE 7-05 Load<br>(Tables 4-1, C4-1) |
|-------------------------------------|-------------------------|--------------------------------------|
| Office                              | 50 PSF                  | 50 PSF + 15 PSF (Partitions)         |
| Classroom                           | 40 PSF                  | 40 PSF                               |
| Laboratory                          | 100 PSF                 | 100 PSF                              |
| Storage                             | 125 PSF                 | 125 PSF                              |
| Corridors/Lobbies @ Ground<br>Level | 100 PSF                 | 100 PSF                              |
| Corridors Above Ground Level        | 80 PSF                  | 80 PSF                               |

## **Existing Conditions**

Joseph S. Murray

#### 5.2 Dead Loads

#### Table 2: Calculated Dead Load

|                     | Dimension   | Unit Weight | Load (PSF) |
|---------------------|-------------|-------------|------------|
| 3" 18 Ga. Composite |             |             | 2.84       |
| Deck                |             |             |            |
| 4-1/2" Topping      | 0.485 CF/SF | 150 PCF     | 72.75      |
| Self-Weight         |             |             | 5          |
| MEP Allowance       |             |             | 10         |
| Ceiling Allowance   |             |             | 5          |
| TOTAL               |             |             | 95.6 PSF   |

#### 5.3 Roof Live Load

#### Table 3: Roof Live Load

| Occupancy | Design Load on<br>Drawings | ASCE 7-05 Load (Tables<br>4-1, C4-1) | Design Load |
|-----------|----------------------------|--------------------------------------|-------------|
| Roof      | N/A                        | 20 PSF                               | 20 PSF      |

5.4 Roof Dead Load

## Table 4: Roof Dead Load

|                               | Dimension   | Unit Weight | Load (PSF) |
|-------------------------------|-------------|-------------|------------|
| 3" 16 Ga. NS Roof Deck        |             |             | 2.46       |
| 3" Concrete Topping<br>(Avg.) | 0.290 CF/SF | 150         | 43.5       |
| Self-Weight                   |             |             | 5          |
| Roofing Allowance             |             |             | 10         |
| TOTAL                         |             |             | 60.96 PSF  |

#### **Existing Conditions**

Joseph S. Murray

#### 5.5 Roof Snow Load

5.5.1 Uniform Roof Snow Load

#### Table 5: Uniform Roof Snow Load

| Design Factor              | ASCE 7-05       | Design Value  |
|----------------------------|-----------------|---------------|
| Snow Load (Pq)             | Figure 7-1      | 30 PSF        |
| Roof Exposure              | Table 7-2       | Fully Exposed |
| Exposure Type              | Section 6.5.6.2 | В             |
| Exposure Factor (Ce)       | Table 7-2       | .9            |
| Thermal Factor (Ct)        | Table 7-3       | 1.0           |
| Building Type              | Table 1-1       | Ш             |
| Importance Factor (I)      | Table 7-4       | 1.1           |
| Flat Roof Snow Load (Pf)   | Equation 7-1    | 20.8 PSF      |
| Minimum Snow Load (Pf,min) | Section 7.2     | 22 PSF        |
| Design Snow Load           | Section 7.2     | 22 PSF        |

Pf = 0.7(Ce)(Ct)(I)(Pq)

Pf = 0.7(.9)(1.0)(1.1)(30) = 20.8 PSF

20.8 < Pf,min = 22  $\rightarrow$  Use 22 PSF as the Design Snow Load

5.5.2 Drift Snow Load

NOTE: For simplification of this analysis, snow drift was not considered. However, it will be necessary to consider snow drift later.

#### 5.6 Penthouse Live Load

#### Table 6: Penthouse Live Load

| Occupancy       | Design Load on<br>Drawings | ASCE 7-05 Load (Tables<br>4-1, C4-1) | Design Load |
|-----------------|----------------------------|--------------------------------------|-------------|
| Mechanical Room | N/A                        | 200 PSF                              | 200 PSF     |

## **Existing Conditions**

Joseph S. Murray

#### 5.7 Penthouse Dead Load

## Table 7: Penthouse Dead Load

|                     | Dimension   | Unit Weight | Design Load (PSF) |
|---------------------|-------------|-------------|-------------------|
| 3" 18 Ga. Composite |             |             | 2.84              |
| Deck                |             |             |                   |
| 4-1/2" Concrete     | 0.485 CF/SF | 150 PCF     | 72.75             |
| Topping             |             |             |                   |
| Self-weight         |             |             | 5                 |
| MEP Allowance       |             |             | 10                |
| Ceiling Allowance   |             |             | 5                 |
| TOTAL               |             |             | 95.6 PSF          |

5.8 Brick Façade Load

#### Table 8: Brick Façade Load (Per Level)

|                        | Height | Unit Weight (PSF) | Design Load (PLF) |
|------------------------|--------|-------------------|-------------------|
| Brick Veneer           | 10'-3" | 35                | 357.8             |
| 2" Rigid Insulation    | 10'-3" | 3                 | 30.7              |
| Steel Framing          | 10'-3" | 6                 | 61.3              |
| Gypsum Wall Board      | 10'-3" | 2                 | 20.5              |
| Window (Glass, Frame,  | 5'-1"  | 8                 | 40.8              |
| Sash) (ASCE 7-05 Table |        |                   |                   |
| C3-1)                  |        |                   |                   |
| TOTAL                  |        |                   | 510.6 PLF         |

5.9 Glass Curtain Wall Load

#### Table 9: Glass Curtain Wall Load (Per Level)

|                                                          | Dimension | Unit Weight (PSF) | Design Load (PLF) |
|----------------------------------------------------------|-----------|-------------------|-------------------|
| Window (Glass, Frame,<br>Sash) (ASCE 7-05 Table<br>C3-1) | 15'-4"    | 8                 | 122.4 PLF         |

#### **Existing Conditions**

Joseph S. Murray

#### 5.10 Penthouse Wall Load

#### Table 10: Penthouse Wall Load

|                   | Dimension | Unit Weight (PSF) | Load (PLF) |
|-------------------|-----------|-------------------|------------|
| Metal Wall Panel  | 16'-4"    | 5                 | 81.7       |
| Steel Framing     | 16'-4"    | 7                 | 114.3      |
| Bracing Allowance | 16'-4"    | 3                 | 49         |
| TOTAL             |           |                   | 246 PLF    |

#### 6. Wind Pressures

ASCE 7-05 was used for wind design. The Analytical Procedure in Chapter 6 is specifically what was instituted.

#### Table 11: Wind Design Factors:

| Design Factor            | ASCE 7-05   | E/W Value | N/S Value |
|--------------------------|-------------|-----------|-----------|
| Design Wind Speed<br>(V) | Figure 6-1C | 90 mph    | 90 mph    |
| Building Type            | Table 1-1   | III       | III       |
| Importance Factor (I)    | Table 6-1   | 1.15      | 1.15      |
| Exposure Type            | 6.5.6.2     | Туре В    | Туре В    |
| Average Height (z)       | 6.5.8       | 84'       | 100'      |

#### Table 12: Design Wind Pressure by Level (Transverse Direction)

| Level                 | Height | kz   | qz    | Pz (PSF)<br>(Windward) | Ph (PSF)<br>(Leeward) | Ptotal (PSF) |
|-----------------------|--------|------|-------|------------------------|-----------------------|--------------|
| 1                     | 0'-0"  | 0.57 | 11.55 | 14.21                  | -11.26                | 25.47        |
| 2                     | 15'-4" | 0.58 | 11.76 | 14.46                  | -11.47                | 25.93        |
| 3                     | 30'-8" | 0.71 | 14.39 | 17.7                   | -14.03                | 31.73        |
| 4                     | 46'-0" | 0.79 | 16.01 | 19.69                  | -15.61                | 35.3         |
| Roof/5th              | 60'-8" | 0.85 | 17.22 | 21.18                  | -16.79                | 37.97        |
| <b>Roof/Penthouse</b> | 77'-0" | 0.92 | 18.65 | 22.94                  | -18.18                | 41.12        |

## NOTE: Assumed a partially enclosed building (qi=qz)

#### **Existing Conditions**

Joseph S. Murray

| 3 psf  | WINGE | -18,2+psf |
|--------|-------|-----------|
| .2 psf |       | -1681 psf |
| 1.7psf | WINGB | -15,6psf  |
| 17,7   |       | -14       |
| 14,5   |       | -11.5     |

#### Figure 8: Elevation of Transverse Pressure Levels

#### Table 13: Design Wind Pressure by Level (Longitudinal Direction)

| Level          | Height | kz   | qz    | Pz (PSF)<br>(Windward) | Ph (PSF)<br>(Leeward) | Ptotal<br>(PSF) |
|----------------|--------|------|-------|------------------------|-----------------------|-----------------|
| G              | 0'-0"  | 0.57 | 11.55 | 14.21                  | N/A                   | 14.21           |
| 1              | 15'-4" | 0.58 | 11.76 | 14.46                  | -8.87                 | 23.33           |
| 2              | 30'-0" | 0.70 | 14.4  | 17.70                  | -10.85                | 28.55           |
| 3              | 45'-4" | 0.79 | 16.01 | 19.69                  | -12.07                | 31.76           |
| 4              | 61'-0" | 0.85 | 17.23 | 21.19                  | -12.99                | 34.18           |
| Roof/5th       | 77'-4" | 0.92 | 18.65 | 22.94                  | -14.06                | 37.00           |
| Roof/Penthouse | 92'-0" | 0.96 | 19.46 | 23.94                  | -14.67                | 38.61           |

#### Figure 9: Elevation of Longitudinal Pressure Levels



#### **Existing Conditions**

Joseph S. Murray

#### 7. Seismic Loads

Chapters 11 and 12 of ASCE 7-05 were used for seismic load design. The Equivalent Lateral Force procedure tests whether the building has the capability of handling a seismic event based on site and building properties.

Hand calculations can be found in Appendix A-2.

#### 7.1 Seismic Design Factors

Design factors were the same for transverse and longitudinal directions since the building's lateral framing system consists of moment frames in both directions. Instead of determining the actual fundamental frequency through extensive calculation, the approximate fundamental period was determined using ASCE 7-05 Section 12.8.2.1.

#### Table 14: Seismic Load Design Factors

| Design Factor                      | ASCE 7-05       | Value  |
|------------------------------------|-----------------|--------|
| Short Period Spectral              | USGS            | 0.291  |
| Response Acceleration (Ss)         |                 |        |
| One Second Spectral                | USGS            | 0.081  |
| <b>Response Acceleration (S1)</b>  |                 |        |
| Site Class                         | Table 11.4-1    | С      |
| Short Period Site Coefficient      | Table 11.4-2    | 1.2    |
| (Fa)                               |                 |        |
| Long Period Site Coefficient       | Equation 11.4-1 | 1.7    |
| (Fv)                               |                 |        |
| Adjusted MCE Short Period          | Equation 11.4-1 | 0.349  |
| Spectral Response                  |                 |        |
| Acceleration (Sms)                 |                 |        |
| Adjusted MCE One Second            | Equation 11.4-2 | 0.138  |
| Spectral Response                  |                 |        |
| Acceleration (SM1)                 |                 |        |
| Design Short Period Spectral       | Equation 11.4-3 | 0.233  |
| <b>Response Acceleration (SMs)</b> |                 |        |
| Design One Second Spectral         | Equation 11.4-4 | 0.0918 |
| <b>Response Acceleration (SM1)</b> |                 |        |
| Maximum Height from Base           | N/A             | 108.3' |
| (hn)                               |                 |        |
| Approximate Period                 | Table 12.8-2    | 0.028  |
| Parameter (Ct)                     |                 |        |

## Existing Conditions

Joseph S. Murray

| Approximate Period           | Table 12.8-2    | 0.8     |
|------------------------------|-----------------|---------|
| Parameter (x)                |                 |         |
| Approximate Fundamental      | Equation 12.8-7 | 1.19 Hz |
| Period (Ta)                  |                 |         |
| Building Type                | Table 1-1       | Ш       |
| Importance Factor (I)        | Table 11.5-1    | 1.25    |
| Seismic Design Category      | Table 6-2       | В       |
| Response Modification        | Table 12.2-1    | 3.0     |
| Coefficient (R)              |                 |         |
| System Over-strength Factor  | Table 12.2-1    | 3.0     |
| (Omega)                      |                 |         |
| Deflection Amplification     | Table 12.2-1    | 3.0     |
| Factor (Cd)                  |                 |         |
| Flexible Diaphragm Condition | Section 12.3.1  | Rigid   |
| Long Period Translation      | Figure 22-15    | 6       |
| Period (TL)                  |                 |         |
| Seismic Response Coefficient | Equation 12.8-3 | 0.0321  |
| (Cs)                         |                 |         |

## 7.2 Effective Seismic Weight

### Table 15: Effective Seismic Weight by Level

| Level     | Floor Area<br>(SF) (96<br>PSF) | Roof<br>Area (SF)<br>(62.5<br>PSF) | Penthouse<br>Floor Area<br>(SF) (296<br>PSF) | Brick<br>Façade (ft.)<br>(510.6 PLF) | Glass<br>Curtain<br>Wall (ft.)<br>(122.4 PLF) | Penthouse<br>Wall (ft.)<br>(246 PLF) | Effective<br>Seismic<br>Weight<br>(k) |
|-----------|--------------------------------|------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------------|
| Penthouse |                                | 4497                               |                                              |                                      |                                               |                                      | 281.06                                |
| Roof/Pent |                                | 7894                               | 4497                                         |                                      |                                               | 288.7                                | 1895.5                                |
| house     |                                |                                    |                                              |                                      |                                               |                                      |                                       |
| 5         | 10832                          | 9375                               | 1557                                         | 421.3                                |                                               | 161.3                                | 2341.47                               |
| 4         | 21814                          |                                    |                                              | 589.7                                | 89.5                                          |                                      | 2406.2                                |
| 3         | 21814                          |                                    |                                              | 589.7                                | 89.5                                          |                                      | 2406.2                                |
| 2         | 21814                          |                                    |                                              | 589.7                                | 89.5                                          |                                      | 2406.2                                |
| 1         | 21814                          |                                    |                                              | 589.7                                | 89.5                                          |                                      | 2406.2                                |
| TOTAL     | 98088                          | 21766                              | 6054                                         | 2780.1                               | 358                                           | 450                                  | 14143                                 |

#### **Existing Conditions**

Joseph S. Murray

#### 7.3 Design Seismic Loads

#### Table 16: Seismic Design Loads by Level

| Level                 | Effective<br>Seismic<br>Weight<br>(wx) | Height<br>from<br>Base<br>(hx) | (wxhx) <sup>k</sup> | Vertical<br>Distribution<br>Factor (Cvx) | Lateral<br>Seismic<br>Force<br>(Fx) (k) | Seismic<br>Design<br>Story<br>Shear<br>(Vx) (k) | Overturning<br>Moment (k-<br>ft.) |
|-----------------------|----------------------------------------|--------------------------------|---------------------|------------------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------|
| Penthouse             | 281.06 k                               | 108.3'                         | 3298348             | 0.0654                                   | 29.97                                   | 29.97                                           | 3217.11                           |
| <b>Roof/Penthouse</b> | 1895.5 k                               | 93'                            | 16390547            | 0.3250                                   | 147.57                                  | 177.54                                          | 13724.53                          |
| 5                     | 2341.47                                | 76.7'                          | 13763837            | 0.2729                                   | 123.92                                  | 301.46                                          | 9501.36                           |
|                       | k                                      |                                |                     |                                          |                                         |                                                 |                                   |
| 4                     | 2406.2 k                               | 61.3'                          | 9050606             | 0.1794                                   | 81.48                                   | 382.94                                          | 4997.72                           |
| 3                     | 2406.2 k                               | 46'                            | 5091519             | 0.1009                                   | 45.84                                   | 428.78                                          | 2108.76                           |
| 2                     | 2406.2 k                               | 30.7′                          | 2263389             | 0.0448                                   | 20.37                                   | 449.15                                          | 625.02                            |
| 1                     | 2406.2 k                               | 15.3'                          | 565478              | 0.0112                                   | 5.09                                    | 454                                             | 78.05                             |
| TOTAL                 | 14143 k                                |                                | 50423724            | 1.0                                      |                                         |                                                 | 34252.54                          |

Seismic Base Shear = 454 k Overturning Moment = 34252.5 k-ft.

Calculations for the earthquake analysis can be made available upon request.

#### 8. Gravity Member Spot Check

A floor slab, slab span, composite beam, and gravity column were inspected.

The floor slab seemed to be appropriately sized for both loading and deflection criteria. The span was also appropriate for unshored construction.

For the composite beam, the live load was not reduced as a conservative decision. However, after inspection, the loading imposed was greater than could be tolerated by the beam. This means that in all likelihood, live loads were reduced. The numbers are very close (1308>1300 k-ft.) and can be seen in Appendix A-2.

For the column, the column appeared to be extremely oversized even with an unreduced live load of 100 PSF. There must be a reason for this beyond pure axial strength. Perhaps this column was also designed for deflection requirements. Perhaps the building was

#### **Existing Conditions**

Joseph S. Murray

designed for new equipment to be added at a later date or for expansion. Perhaps the column was designed to take some of the moment from the lateral system. These sort of combined effects will be examined in later reports.





#### **Existing Conditions**

Joseph S. Murray

#### 9. Conclusion

This process of analyzing the building has led me to believe that a much more in depth study must be undertaken for Tech 2. Combined effects must be studied and a much more intimate understanding of the loads used in design must be undertaken. It should also be considered that educational facilities frequently overdesign in preparation for expansion and growth. Also, dead or live loads may increase depending on specific equipment used in a laboratory setting.

A computer model and Excel sheets will be made for the upcoming assignment to limit hand calculations and better understand the building as a system, not just as individual parts. Some more complex and in depth calculations need to be undertaken as well, such as foundation analysis and a building enclosure analysis. Roof uplift must also be added to the wind analysis and snow drift must be considered.

#### **Existing Conditions**

Joseph S. Murray

#### Appendix A-1

ASCE 7-05: Section 6.5

| V = 90 mph                                                         | (Figure 6-16)     |
|--------------------------------------------------------------------|-------------------|
| Occupancy is 1490 > 500 for university, so TYPE III                | (Table 1-1)       |
| Importance TYPE III; V < 100 mph $\rightarrow$ therefore, I = 1.15 | (Table 6-1)       |
| Roughness Type B (Urban/Suburban)                                  | (Section 6.5.6.2) |

#### Figure A1: Plan View



#### Figure A2: East Elevation



H = (154)(84') + (121.3)(65') = 78'(154+121.3)

N/S: L = 275.3'B = 86.9' H = 100' to be conservative

## Existing Conditions

Joseph S. Murray

• Building Category = III (Table 1-1)  
• Exposure = B (Urbaus/Suburbaus) (6.5.16.2)  

$$92 = 0.00256 K_2 K_2 K_3 V^2 I (Eq. 6-15)$$
  
• Determine Z for top Lavel:  
 $E/W$  N/S  
 $Z = 77' 108'-4''$   
• Determine  $K_2$  for Roof Level: (Table 6-3)  
 $K_2 = .92$  1.01  
 $K_2 = .92$  1.01  
 $K_2 = .85$  .85  
 $I = 1.15$  (Category III) (Table 6-1)  
 $F/W$  N/S  
 $I = 1.15$  (Category III) (Table 6-1)  
 $F/W$  Since Tox 1 sec  $\rightarrow 6 = .85$  (6.5.8.1)  
 $*Assuming # stories/10 = 1/0 = .6 = T_0$   
•  $G(p_1 = \pm .55 pathally ended buildings (Fig. 65)
 $p = q. G(p - q; (G(p_1)))$$ 

#### **Existing Conditions**

Joseph S. Murray

- East/West Pressures (Figure 6-6) Windward Cp = . 8 Leeward Cp is a function of 4B $4B = \frac{86.9}{275.3} = .316 - 5 Gp = -.5$ · Elevation: 23 psf -18,2+psf WINGE 21.2 psf -16.81 BF 19.7 psf -15,6psf WINGB 17.7 -14 14,5 -11.5 14.2 -11.3 East Side West Side · Sample Calc (wind word) p=18.65 (185)(.8) - (18.63)(±:55) P= 22,94 psf Leeward Cp = -. 24 ·Elevation 5 -14.795F 23.9 psf - 14.1 22.9 psf 21.2 -139 19.7 -12.1 WINGC WING B 1-10.9 17,7 -8.9 14.5 14.2 South North Site

#### **Existing Conditions**

Joseph S. Murray

#### Appendix A-2:

· Check Floor Slab Worst Total Super. Load on Floor Slab 13 125psF Live + 20 PSF Mile. Dead = 145 PSF For 3" 18 Ga, use Vulcraft 3VLI18 and the 4 1/2" topping as specified span ZIO psf > 145 psf TOK · Check Span: Design Clear Span 13 10'8" 3VL II8 can be unshored up to 12'-0" 12'>10'8" [OK] The Deck and Slab are suitable. · Check Composite Beam Beam selected is between As and B3 on 5th Floor of Wing C. Live Load for Lab = 100 psf \* could be reduced

## Existing Conditions

Joseph S. Murray

Pead Load = 95.6 PSF  
1.2 (95.6) + 1.6 (100) = 2741.7 PSF  
Trib. width = 21'41"  

$$2741.7 \times 21.33 = 5.866.41f$$
  
 $\cdot Simply Supported$   
Mmax =  $\frac{1}{8}2^2 = 5.86(42.25')^2$   
 $= 1307.6 \text{ k-ft}$   
 $\cdot \text{Existing Beam is 24x76 [50]}$   
\* Assuming 17.4 k is chear stud  
strength, 50 (17.4) =  $\Sigma Q_n = 870 \text{ k}$   
 $beff = 142.25(2)(2) = 126.75^{11}$   
 $\frac{121.33(12)}{2}(2) = 255.96^{11}$   
 $beff = 12.6.75^{11}$   
 $A_3 = 22.41.5n^2$   
 $A_3 = 22.4(50) = 1120 \text{ k}$   
 $V_2 = .85(121.75)(4000)(4.5)/1000}$   
 $\leq Q_n \leq V_2' \Rightarrow Y_2 = 4.5 - \frac{2}{2}$   
 $Y_2 = 4.5 - \frac{870}{2(.85)(4)(121.75)} = 3.492.35^{11}$ 

#### **Existing Conditions**

Joseph S. Murray

For W24x76 W/ 5Qn = 870K and 1/2 = 3.5%, \$Mp=1300 K-A 1300 K-Ft < 1308 K-Pt tesign moment \* Must have chosen a higher loading \* could have reduced live loads \* Numbers are close. - Check Column (Aure Axial) Column A3 below Level 5 Brick Load = 510,6 PLF Roof DL = 60.96 PSF Snow = 22 PSF > Roof LL of 20 BF Laboratory LL = 100 PSF 1.2 (60.96) + 1.2 (510.6) + 1.6 (100) + .5 (22) = 244.15 PSF + 612.7 PLF 612.7 (21.33) = 13.07 K from 1000 Veneer 244.15 (21.33 × 42.25) = 110 K Pu= 123.07K

#### **Existing Conditions**

Joseph S. Murray

Column B WIYX109 @ A4 between 4 and 5 KL= 15'4" For KL= 16 \$P\_n=1190K > 123.07K OKI. Why is the column so oversized? Could be for serviceability Could be for future expansion